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Abstract

As large language models (LLMs) are increas-001
ingly deployed in diverse applications, includ-002
ing chatbot assistants and code generation,003
aligning their behavior with safety and ethi-004
cal standards has become paramount. How-005
ever, jailbreak attacks, which exploit vulnera-006
bilities to elicit unintended or harmful outputs,007
threaten LLMs safety significantly. In this pa-008
per, we introduce Layer-AdvPatcher, a novel009
methodology designed to defend against jail-010
break attacks by utilizing unlearning strategy011
to patch specific layers within LLMs through012
self-augmented datasets. Our insight is that013
certain layer(s), tend to produce affirmative to-014
kens when faced with harmful prompts. By015
identifying these layers and adversarially ex-016
posing them to generate more harmful data,017
one can understand their inherent and diverse018
vulnerabilities to attacks. With this self expo-019
sures, we then “unlearn” these issues, reduc-020
ing the impact of affirmative tokens and hence021
minimizing jailbreak risks while keeping the022
model’s responses to safe queries intact. We023
conduct extensive experiments on two models,024
four benchmark datasets, and multiple state-of-025
the-art jailbreak benchmarks to demonstrate the026
efficacy of our approach. Results indicate that027
our framework reduces the harmfulness and at-028
tack success rate of jailbreak attacks without029
compromising utility for benign queries com-030
pared to recent defense methods1.031

1 Introduction032

Large language models (LLMs) have showcased033

impressive capabilities across a wide range of nat-034

ural language tasks. Despite these advancements,035

ensuring their safety and alignment with human036

values remains a critical challenge. Numerous re-037

ports highlight that LLMs can generate unauthentic038

(Ji et al., 2023; Yao et al., 2024a), privacy-leaking039

1Our code is publicly available at: https://anonymous.
4open.science/r/LayerBugFixer-6B28

Figure 1: Layer-wise toxic scores for Mistral-7B and
Llama2-7B models, highlighting a significant spike
in toxicity around layer 30 for Mistral-7B and 31 for
Llama2-7B model.

(Huang et al., 2024), and even harmful outputs (Yao 040

et al., 2024b), hindering their deployment in real- 041

world applications such as education that demand 042

precise and ethical responses. 043

Among these potential risks, one prominent chal- 044

lenge is that LLMs remain particularly vulnerable 045

to “jailbreak attack”, (Perez et al., 2022; Deng et al., 046

2023; Wei et al., 2023; Zou et al., 2023; Shen et al., 047

2024; Yi et al., 2024; Zhao et al., 2024b; Huang 048

et al., 2023; Liu et al., 2024; Li et al., 2024), a 049

type of adversarial prompt that provokes the model 050

to produce harmful responses that violate usage 051

policies and societal norms. Current defense tech- 052

niques tailored for jailbreak attacks generally fall 053

into three categories (Xu et al., 2024b): 1) self- 054

processing defenses (Li et al., 2023b; Wu et al., 055

2024; Zhang et al., 2024); 2) additional helper de- 056

fenses (Pisano et al., 2024; Wang et al., 2024); and 057
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Figure 2: Working pipeline of our proposed Layer-AdvPatcher consisting of three interacted steps: i) toxic layer
identification choosing the most toxic layer that generate affirmative tokens, ii) adversarial augmentation generating
diverse and harmful content to expose the inherent vulnerability of toxic layer, and iii) toxic layer editing unlearning
the harmful behaviors by precise fine-tuning.

3) input permutation defenses (Kumar et al., 2024;058

Cao et al., 2024). These methods, leveraging full059

fine-tuning or few-shot prompting to indiscrimi-060

nately suppress harmful outputs from LLMs, often061

face a suboptimal trade-off between defense suc-062

cess and general performance retention.063

Recent studies on underlying mechanisms of jail-064

break attacks have uncovered an interesting fact065

about toxic generative distribution. During the in-066

ference process of successful jailbreak attacks, the067

harmful contents are often induced by affirmative068

tokens such as “Sure”, “Absolute”, “Certain” (Zou069

et al., 2023). In addition, there exists a region070

of toxic layers (Mengru Wang, 2024; Zhao et al.,071

2024a) within LLMs that exhibit disproportionately072

strong preferences for producing these affirmative073

tokens. The preliminary understanding indicates074

that the toxic region is particularly susceptible to075

following unsafe instructions in the prompt, which076

significantly increases the likelihood of producing077

harmful or undesirable responses.078

Based on this observation, we conjecture that a079

simple solution for jailbreak defense is to re-align080

the small toxic region, which could promisingly081

reduce the generation tendency of affirmative to-082

kens while preserving the overall performance. The083

intuition is the toxic layers contribute most to un-084

safe behaviors, while the fine-tuning at other rela-085

tively safe areas can significantly alter model’s gen-086

eral knowledge. On the other side, targeting at the087

toxic layers make interventions more efficient to the 088

evolutionary and unpredictable jailbreak prompts. 089

However, it is challenging to eliminate harmful out- 090

put by only editing the key toxic regions. First, 091

there usually exists a cluster of toxic layers prevent- 092

ing the precise and efficient re-alignment. Second, 093

the defense strategies developed for fixed bench- 094

mark datasets cannot ensure the generalization to 095

diverse and stronger jailbreak prompts. 096

To bridge gaps, we introduce a novel jailbreak 097

defense paradigm named Layer-AdvPatcher, 098

which first exposes the identified toxic layer to 099

generate adversarial examples comprising diverse 100

prompts and harmful contents, and then performs 101

localized and precise toxicity editing. Particularly, 102

this pipeline involves a three successive steps. i) 103

Toxic Layer Locating: We identify the key toxic 104

layers via decoding hidden states at each layer and 105

accumulating probability of affirmative tokens. The 106

toxic region are the layers associated with signif- 107

icantly higher probability values. ii) Adversar- 108

ial Augmentation: We maximize exposure to jail- 109

break vulnerabilities by adversarially fine-tuning 110

the toxic layers to generate harmful outputs. Start- 111

ing from a standard dataset, we introduce perturba- 112

tions to the original prompts and replace affirma- 113

tive tokens to trigger adversarial fine-tuning, which 114

produces a diverse set of harmful examples. This 115

process exposes the inherent vulnerabilities in the 116

toxic layers and expands the training dataset, en- 117
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hancing the model’s ability to generalize and resist118

unsafe instructions119

iii) Toxic Layer Editing: We apply an unlearn-120

ing method (Yao et al., 2024c) to update model’s121

initialization parameters based upon the augmented122

training set, specifically mitigating the exposed vul-123

nerabilities within the identified toxic layers. We124

assess the performance, efficiency, usability, and125

adaptability of Layer-AdvPatcher across differ-126

ent LLMs. In summary, this paper presents the127

following key contributions:128

• We design a simple yet effective method to129

uncover the toxic layers, which often appear130

at the later stages of LLMs. We show that131

the precise editing at these layers is sufficient132

to mitigate the tendency of affirmative token133

generation in presence of harmful prompts.134

• We propose Layer-AdvPatcher, a defense135

framework that first generate the layer-specific136

toxicity patterns and then safeguard LLMs137

against them to patch the toxic layers.138

• We open-source a specialized dataset gener-139

ated from the identified toxic layers of Llama140

and Mistral models. This dataset enables re-141

producibility and provides a foundation for142

future research on addressing layer-specific143

vulnerabilities in LLMs.144

• We perform extensive evaluations of145

Layer-AdvPatcher on three advanced attack146

methods, two toxicity benchmarks, and two147

utility-oriented benchmarks. By comparing148

with SOTA defense strategies, the results149

demonstrate our superiority in effectiveness,150

efficiency, and maintaining utility.151

2 Preliminary Work152

Jailbreak Attacks. Jailbreak attacks are adversar-153

ial prompts designed to bypass the safety mech-154

anisms of LLMs, causing them to generate disal-155

lowed or harmful content (Zou et al., 2023; Liu156

et al., 2024). Formally, given a well-aligned lan-157

guage model M with parameters θ, the attacker158

seeks an adversarial prompt Xharm such that the159

model produces a harmful response Yharm:160

Yharm = M(Xharm; θ). (1)161

Yharm contains harmful or inappropriate content.162

Jailbreak Defense. The objective of jailbreak de-163

fense is to modify model M or use extra safety164

prompts to prevent the generation of harmful re- 165

sponses, even when presented with adversarial 166

prompts. In this work, we focus on altering model 167

parameters θ. The defense aims to ensure that for 168

any input X , including adversarial prompts, the 169

model’s output Y adheres to safety guidelines: 170

Y = Mdef(X; θdef), (2) 171

where Y is safe and compliant generated content, 172

and θdef are the updated model parameters after 173

applying defense mechanisms. 174

LLM Unlearning. LLM unlearning refers to tech- 175

niques that selectively remove undesirable behav- 176

iors or knowledge from a trained language model 177

without retraining it from scratch (Yao et al., 2024c) 178

. In the context of jailbreak defense, unlearning 179

aims to reduce the model’s propensity to generate 180

harmful content in response to adversarial prompts 181

by updating the model parameters θ to decrease the 182

likelihood of producing such content. 183

3 Layer-AdvPatcher 184

As illustrated in Figure 2, our framework consists 185

of three interacted steps, each of which is experi- 186

mentally shown effective to the precise and effec- 187

tive defense against jailbreak attacks. 188

3.1 Toxic Layer Identification 189

Our motivation stems from two key observations: 190

(1) The first affirmative tokens generated by LLMs 191

in response to jailbreak prompts are more likely 192

to lead to harmful outputs (Zou et al., 2023), and 193

(2) certain layers within LLMs tend to amplify 194

toxic or affirmative tokens when exposed to harm- 195

ful prompts (Mengru Wang, 2024). 196

To analyze the harmful tendencies of different 197

layers, we conduct experiments using several Ad- 198

vBench (Zou et al., 2023) prompts to explore the 199

model’s token generation process. At each layer l, 200

we use decoding head to project hidden states into 201

vocabulary space and track probability Pl(ti|Xj
harm) 202

assigned to each tokens ti, where Xj
harm denotes 203

the harmful prompt and ti is the target affirmative 204

token. We manually construct a set of popular af- 205

firmative tokens (e.g., "sure," "absolutely," "yes") 206

and denote it as Taffirm, which can clearly distinct 207

the toxic and safe layers. The details of Taffirm are 208

listed in Appendix A.2. The toxic score at layer l 209

is computed as the sum of probabilities for all the 210
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affirmative tokens across a set of jailbreak prompts:211

Stoxic(l) =
1

N

N∑
j=1

∑
ti∈Taffirm

Pl(ti|Xj
harm). (3)212

N is the total number of adversarial prompts ran-213

domly selected from AdvBench. This score reflects214

the average tendency of each layer to generate af-215

firmative or harmful tokens in the presence of mul-216

tiple jailbreak prompts.217

We visualize the toxic scores across layers in two218

commonly-used LLMs, i.e., Mistral-7B-Instruct-219

v0.3 and Llama-2-7B-chat (Mengru Wang, 2024;220

Zhao et al., 2024a), in Figure 1. It is observed the221

toxic score generally rise with the increasing of222

model layers. Particularly, only the layers nearing223

the inference ending have significantly larger val-224

ues, facilitating the precise identification of toxic225

region. This is attributed to the careful selection of226

affirmative tokens. Layers with higher toxic scores227

are more vulnerable to jailbreak attacks, making228

them prime targets for following mitigation strate-229

gies.230

3.2 Adversarial Augmentation231

This step is to expose the jailbreak vulnerability232

of toxic layers by fine-tuning them to generate ad-233

versarial outputs. There are extensive jailbreak234

prompts to induce the harmful knowledge stored235

at the toxic layers. Thus the traditional defense236

strategies designed on limited benchmark datasets237

might cannot generalize to sophisticated attackers.238

We propose to augment the diversity of harmful239

data via randomly perturbing the input prompts240

and supervising the adversarial response genera-241

tion from toxic layers, identifying and mitigating242

their inherent vulnerabilities.243

Step 1: Training Data Preparation. We construct244

an adversarial training dataset, where each sample245

comprises a pair of harmful prompt input and cor-246

responding malignant output. Particularly, harmful247

prompt Xharm is provided by the existing jailbreak248

datasets such as AdvBench. It will be used to in-249

fer LLMs to elicit target responses composed of250

three key components: affirmative token represent-251

ing positive confirmations of harmful instructions,252

transition responses that acknowledge the harmful253

request without providing explicit harmful content,254

and harmful content that contains specific instruc-255

tions or explicit harmful information. The harm-256

ful output Yharm is a concatenation of these ele-257

ments. We use a weaker-aligned version of LLMs—258

Mistral-7B-v0.3 and Llama-2-7B—to generate the 259

harmful content within Yharm. 260

Step 2: Adversarial Tuning of Toxic Layers. The 261

fine-tuning process focuses on adjusting the toxic 262

layers to amplify harmful outputs. We achieve this 263

by minimizing the negative log-likelihood of the 264

harmful responses: 265

θ
(l)
harm = argmin

θ(l)
− 1

N

N∑
1

logPθ(l)(Y
j

harm |Xj
harm).

(4) 266

θ(l) is model parameters at toxic layers, and Pθ(l) 267

denotes probability of harmful generative response 268

conditioned on the layers’ parameters. During the 269

adversarial augmentation, we only update the layer 270

with the highest toxic score to infer its inherent 271

harmful knowledge, which is accessible by the jail- 272

break prompts to create malignant responses. 273

Step 3: Augmented Data Generation. Once 274

the model finishes above tuning, we use it to in- 275

fer the diverse and malignant responses from the 276

toxic layers via two steps: random dropping of 277

harmful input prompt and adversarial generation. 278

Random Dropping: We disrupt the harmful prompt 279

via random dropping to trigger the toxic layers in 280

different ways and facilitate the elicitation of di- 281

verse malignant responses. Given a harmful prompt 282

Xharm = [x1, x2, . . . , xn], where xi represents in- 283

dividual tokens, we randomly select and drop a 284

subset of tokens. The fraction of tokens dropped is 285

controlled by a parameter α, where α ∈ (0, 1). 286

In our experiments, we typically set α = 0.1, 287

dropping 10% of the tokens. The new harm- 288

ful prompt after random dropping is denoted as 289

X ′
harm. Adversarial Generation: Considering modi- 290

fied prompt X ′
harm, the above model containing fine- 291

tuned toxic layers θ(l)harm is leveraged to generate the 292

adversarial content Y ′
harm. Since these layer are op- 293

timized to maximize the likelihood of producing 294

harmful responses, their vulnerabilities is highly 295

revealed even in the presence of partially-corrupted 296

input prompts. Let Dharm = {(X ′
harm, Y

′
harm)} de- 297

note the set of augmented harmful prompts and 298

their corresponding responses. We will use it su- 299

pervise backbone models to learn to defense the 300

diverse jailbreak attacks. 301

3.3 Toxic Layer Editing 302

We propose to erase model’s undesired ability of 303

generating harmful response by adopting machine 304

unlearning (Yao et al., 2024c), which is efficient 305

and precise to edit specific knowledge. In this work, 306
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we will focus on editing the toxic layers mainly re-307

sponsible for affirmative token generation that trig-308

gers the harmful responses. By updating the toxic309

layers base upon augmented dataset Dharm, one can310

minimize the model’s propensity to produce the311

harmful content while preserving its overall perfor-312

mance. This is achieved by applying the following313

loss functions.314

Forgetting Loss: Inspired by methods for unlearn-315

ing undesirable behaviors in language models (Yao316

et al., 2024c), our approach employs gradient as-317

cent on the selected toxic layers to increase the318

loss associated with generating harmful responses.319

By maximizing this loss, we effectively reduce the320

model’s tendency to produce toxic content. For-321

mally, the forgetting loss on the augmented harmful322

dataset Dharm is defined as:323

Lfgt = −L(Dharm, θ
(l))

=
∑

Dharm
logPθ(l)(Y

′j
harm |X ′j

harm).
(5)324

Herein L(Dharm, θ
(l)) denote cross-entropy loss,325

which is obtained by integrating each harmful data326

pair (X ′
harm, Y

′
harm) within Dharm. θ(l) denotes pa-327

rameters of toxic layers, including the layer associ-328

ated with the highest toxic score and its neighbor-329

ing couple layers. The main reason of involving330

the neighboring layers is there exists inherent and331

indecomposable interactions between successive332

layers within LLMs. In other word, the localized333

editing at the most toxic layer may be not sufficient334

to erase the harmful generation behaviors. The335

inclusion of θ(l) means the loss gradients will be336

only conducted at the selected layers. Depending337

on the backbone models, we select the edited toxic338

layers according to their toxic scores in Figure 1.339

For example, we use layers 29-30 for Mistral-7B340

and layers 30-31 for Llama2-7B.341

Random Mismatch Loss: To ensure the model342

does not reinforce harmful behaviors, we intro-343

duce a random mismatch loss. This technique as-344

signs random non-harmful outputs Yrand to harmful345

prompts X ′
harm and penalizes the model if it at-346

tempts to produce toxic responses. By doing so,347

we encourage the model to generalize away from348

harmful outputs. The random mismatch loss is:349

Lrand = L({(X ′
harm, Yrand)}; θ(l)). (6)350

The above cross-entropy loss is obtained by iterat-351

ing each of harmful prompts in augmented dataset352

Dharm. For each X ′
harm, the random output is gener-353

ated by inferring LLMs to obtain the meaningless354

and non-harmful data.355

KL Regularization Loss: To preserve the model’s 356

performance on normal data, we introduce a regu- 357

larization term that minimizes the Kullback-Leibler 358

(KL) divergence between the output distributions of 359

the original model θ(l)0 and the updated model θ(l) 360

on non-harmful data Dnorm. This ensures that the 361

unlearning process does not degrade the model’s 362

utility. The KL regularization loss is defined as: 363

Lreg = KL
(
h
θ
(l)
0

(Dnorm) ∥hθ(l)(Dnorm)
)
. (7) 364

hθ(Dnorm) represents the output distribution of the 365

model with parameters θ on dataset Dnorm. 366

The total loss function used to update the model 367

is a weighted combination of the above loss items: 368

Ltotal = Lfgt + λLrand + βLreg, (8) 369

where λ and β are hyperparameters controlling 370

the balance between unlearning, random mismatch, 371

and regularization losses. It should be highlighted 372

that the editing process of harmful generation be- 373

haviors is only conducted at the most toxic layer 374

and its neighborhoods. The number of neighboring 375

layers is often less than two. This facilitates the 376

precise defense editing while preserving the overall 377

model performance. 378

4 Experiments 379

This section assesses the effectiveness, help- 380

fulness, efficiency, and compatibility of 381

Layer-AdvPatcher. 382

4.1 Experimental Setup 383

Models and Dataset. Following (Zhao et al., 384

2024a), we deploy Layer-AdvPatcher on two 385

open-source LLMs, namely Llama2-7b-chat (Tou- 386

vron et al., 2023) and Mistral-7b (Jiang et al., 2023) 387

to comprehensively evaluate its performance. To 388

assess the effectiveness of our defense against jail- 389

break attacks, we employ AdvBench to generate ad- 390

versarial prompts using various attack techniques, 391

with GPT-Judge (Qi et al., 2024) and attack suc- 392

cess rate (ASR) as the primary evaluation metric. 393

In our locating process, we analyze 100 harmful 394

prompts to identify the toxic layers. To measure 395

the helpfulness of the edited LLMs, we use 800 396

diverse instructions from the commonly referenced 397

benchmark Just-Eval (Lin et al., 2023). 398

Attack Setup. We evaluate three state-of-the- 399

art jailbreak attacks: GCG (Zou et al., 2023), 400

PAIR (Chao et al., 2023), DeepInception (Li et al., 401
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Model Defense
Harmful Benchmark ↓ Jailbreak Attacks ↓

AdvBench HEx-PHI GCG PAIR DeepInception

Mistral

No Defense 3.14 (5.77%) 3.00 (17.24%) 3.88 (41.35%) 4.42 (62.50%) 4.22 (100.00%)
Self-Examination 1.47 (0.96%) 2.01 (10.69%) 1.24 (8.65%) 1.69 (16.67%) 3.02 (62.00%)

Paraphrase 2.63 (6.73%) 2.87 (18.28%) 2.61 (8.65%) 2.92 (22.92%) 4.36 (100.00%)
Unlearning 3.08 (4.81%) 2.92 (17.59%) 3.91 (41.35%) 4.40 (52.08%) 4.16 (100.00%)

SafeDecoding 3.13 (9.62%) 3.04 (24.14%) 3.72 (39.42%) 4.38 (70.83%) 4.44 (100.00%)
Layer-AdvPatcher 2.43 (7.69%) 2.59 (23.79%) 3.22 (58.65%) 3.65 (75.00%) 4.26 (98.00%)

Llama2

No Defense 1.00 (0.00%) 1.18 (0.69%) 2.00 (14.42%) 1.95 (38.64%) 3.10 (62.00%)
Self-Examination 1.00 (0.00%) 1.00 (0.00%) 1.23 (3.85%) 1.00 (2.27%) 1.06 (2.00%)

Paraphrase 1.06 (0.00%) 1.28 (3.79%) 0.15 (5.77%) 1.23 (9.09%) 2.86 (54.00%)
Unlearning 1.00 (0.00%) 1.15 (0.69%) 1.86 (15.38%) 3.14 (62.00%) 3.14 (62.00%)

SafeDecoding 1.00 (0.00%) 1.14 (0.34%) 1.08 (0.96%) 1.20 (6.82%) 1.04 (0.00%)
Layer-AdvPatcher 1.00 (0.00%) 1.17 (1.38%) 1.82 (13.46%) 1.75 (34.09%) 3.26 (70.00%)

Table 1: This table compares the harmfulness scores and attack success rates (ASR, shown in brackets) for various
jailbreak attacks on Mistral-7b and Llama2-7b-chat, with Layer-AdvPatcherand other baseline methods. Best
results are marked with bold. Best results among editing-based methods are marked with underline

Model Defense Just-Eval (1− 5) ↑
Helpfulness Clear Factual Deep Engaging Avg.

Mistral

No Defense 4.646 4.894 4.709 4.358 4.088 4.539
Self-Examination 4.753 4.865 4.746 4.336 4.108 4.562

Paraphrase 4.383 4.743 4.582 4.228 3.933 4.374
SafeDecoding 4.790 4.831 4.685 4.411 4.120 4.567

Layer-AdvPatcher 4.628 (4) 4.848 (3) 4.653 (4) 4.408 (2) 4.121 (1) 4.532 (4)

Llama2

No Defense 4.545 4.845 4.567 4.198 4.038 4.439
Self-Examination 1.304 2.313 2.354 1.207 1.293 1.694

Paraphrase 4.370 4.739 4.522 4.163 3.909 4.341
SafeDecoding 4.424 4.803 4.548 4.108 3.940 4.365

Layer-AdvPatcher 4.693 (1) 4.846 (1) 4.598 (1) 4.398 (1) 4.033 (2) 4.514 (1)

Table 2: This table presents the Just-Eval scores of Layer-AdvPatcher when implemented in Mistral and Llama2.
The numbers in parentheses indicate Layer-AdvPatcher’ ranking among the defense methods. Results show that
ours is the most stable defense method, consistently maintaining good quality in multiple evaluation aspects, and
did best in Engaging across the Mistral model. Best results are marked with bold

2023a). For GCG, we use EasyJailbreak (Zhou402

et al., 2024) for agile implementation. Then we403

follow the default parameter setting in EasyJail-404

break and apply gpt-4o-mini as the attack model405

that generates jailbreak suffixes. To assess the de-406

fense performance when a naive attacker directly407

inputs harmful queries to the language model, we408

utilize two harmful query benchmark datasets: Ad-409

vbench (Zou et al., 2023) and HEx-PHI (Qi et al.,410

2024). Detailed setup of these attack methods and411

harmful query datasets can be found in Appendix412

A.1.413

Baselines Setup. We consider four recent de-414

fense strategies: PPL (Alon and Kamfonas,415

2023), Self-Examination (Helbling et al., 2023),416

Paraphrase (Jain et al., 2023),Unlearning (Yao417

et al., 2024c), and SafeDecoding (Xu et al.,418

2024a) as our comparing baselines. We adopt419

the hyper-parameters suggested in their origi- 420

nal papers for each method. For our proposed 421

Layer-AdvPatchermethod, we identify specific 422

layers and parameters for unlearning. For Mistral- 423

7B-Instruct-v0.3, we select the 29-30 layers QV 424

and Input LayerNorm for optimization. 425

4.2 Main Results 426

Benchmark Comparison to SOTA Defense Ap- 427

proaches. Table 1 presents a benchmark compar- 428

ison, displaying harmfulness scores and ASR (at- 429

tack success rates, shown in brackets) for various 430

defense methods, including Layer-AdvPatcher , 431

across multiple models (Mistral and Llama2) under 432

several benchmark attacks. The defense methods 433

include SafeDecoding, Self-Examination, and oth- 434

ers. 435

For Mistral, Layer-AdvPatcher outperforms 436
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Figure 3: Comparison of Attack Success Rate (ASR)
across different datasets and layers.

parameter modification-based defenses (e.g., Un-437

learning and SafeDecoding) and delivers results438

on par with prompt-based methods. For Llama2,439

Layer-AdvPatcher exhibits better performance440

than Unlearning—the backbone editing method of441

our defense paradigm—in most settings, highlight-442

ing that leveraging diverse and malicious responses443

enhances robustness and effectiveness in detoxify-444

ing LLMs.445

Additionally, Table 2 summarizes the impact of446

various defense strategies on the general perfor-447

mance of LLMs, including metrics such as help-448

fulness and clarity. Compared to other approaches,449

Layer-AdvPatcher preserves the LLM’s helpful-450

ness with minimal reduction—only 2% for Mistral-451

7B and even increase for Llama2-7B.452

One notable “negative” observation is that453

prompt-based methods (e.g., Self-Examination and454

Paraphrase) demonstrate significant advantages455

over parameter-editing approaches in terms of se-456

curity metrics. However, we believe that our ex-457

ploration in this direction is highly valuable for458

two reasons: (1) prompt-based methods rely solely459

on system prompts or GPT-based input modifying460

to suppress harmful behaviors, without addressing461

the toxic content embedded in the model’s param-462

eters; and (2) these two approaches are not mu-463

tually exclusive, meaning they can be combined464

together to establish an editing-then-prompting de-465

fense paradigm to achieve a higher safety level.466

4.3 Ablation Studies467

Impact of Dataset Used to use for Unlearning We468

used three kinds of datasets to do our layer-specific469

unlearning (Yao et al., 2024c) in this ablation study470

section:471

1. AdvBench-Train: The standard AdvBench472

training set, containing 80% of the original473

Figure 4: This figure is used to study impact of layers
and parameters inside it when unlearning.

dataset. We refer to this dataset as AdvBench- 474

Train. 475

2. Augmented-Normal: This dataset was gener- 476

ated by a model fine-tuned on AdvBench-Train 477

and is an augmented version of the original 478

dataset. 479

3. Augmented-Diversified: This dataset is 480

based on a diversified version of AdvBench- 481

Train, where affirmative tokens were replaced 482

with other toxic tokens, making the dataset 483

10x larger. 484

As shown in Figure 3, the Attack Success Rate 485

(ASR) differs across layers and datasets. In layer 486

27, the augmented dataset (Augmented-Diversified) 487

performs better with lower ASR. However, in layer 488

28, the opposite occurs, which is interesting. The 489

reason may be that the diversity in Augmented- 490

Diversified may help unlearning in layer 27 but 491

not in layer 28, possibly introducing complexity or 492

noise that affects different layers in different ways. 493

The larger dataset size in Augmented-Diversified 494

may lead to overfitting in layer 28, making the 495

model less generalizable and more vulnerable to 496

attacks, while Augmented-Normal performs better 497

in this case. 498

Impact of Layer and Parameters on Unlearn- 499

ing We evaluated the effect of different parameter 500

choices for unlearning layers in the model, focus- 501

ing on the query, key, value attention matrices, and 502

input layer normalization. The configurations used 503

include: qv, qkv, qvnorm, qkvnorm, and all, where 504

the latter unlearns all aspects of the layer. The re- 505

sults show that the parameter all consistently leads 506

to the highest Attack Success Rate (ASR) across 507

all layers, indicating that fully unlearning a layer 508

introduces more vulnerability to attacks. Specifi- 509
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cally, layers 27-30 and 28-29 exhibit the highest510

ASR when all is applied, suggesting these layers511

are particularly vulnerable when full unlearning512

is performed. In contrast, more selective unlearn-513

ing results in lower ASR, showing that targeted514

unlearning is more effective in maintaining model515

robustness. The parameters qvnorm and qv gener-516

ally yield better defense across most layers, while517

the qv parameter results in slightly higher ASR518

values, especially in layers 27-29. This indicates519

that excluding the key matrices from unlearning520

provides less defense. In conclusion, targeted un-521

learning of specific components like qvnorm is a522

better strategy for reducing ASR than unlearning523

all aspects of a layer, which increases the model’s524

susceptibility to attacks.525

5 Related Work526

Jailbreak Attack. Recent studies have extensively527

explored the vulnerabilities of LLMs to jailbreak528

attacks, which use adversarial prompts to bypass529

safety mechanisms and provoke harmful or policy-530

violating responses. One of the mainstream attacks531

is red teaming and automated jailbreaking (Perez532

et al., 2022; Deng et al., 2023), which adopts au-533

tomated techniques to uncover vulnerabilities in534

LLMs, accelerating the discovery of adversarial535

behaviors across multiple models. Another line of536

work develops more advanced techniques for gener-537

ating stealthy jailbreak prompts that are difficult to538

detect, using subtle manipulations to bypass model539

safeguards (Liu et al., 2023; Li et al., 2023a). Be-540

sides the attack modeling, some of existing works541

delve into understanding the limitations of current542

safety mechanisms (Wei et al., 2023; Zou et al.,543

2023), showing how adversarial prompts can trans-544

fer across different language models.545

Jailbreak Defense. Current defense techniques546

against jailbreak attacks are generally categorized547

into self-processing defenses, additional helper de-548

fenses, and input permutation defenses. First, the549

self-processing defenses aim to make LLMs self-550

regulate without extensive fine-tuning (Li et al.,551

2023b; Wu et al., 2024; Zhang et al., 2024). These552

approaches help the model align its outputs by pri-553

oritizing safe goals or using adversarial techniques554

to defend itself. Second, the additional helper de-555

fenses involve external frameworks or mechanisms556

to enhance model safety (Pisano et al., 2024; Wang557

et al., 2024). They use external alignments or adver-558

sarial carriers to mitigate jailbreak attacks. Third,559

the input permutation defenses focus on ensuring 560

safety by altering or certifying the robustness of 561

inputs to prevent adversarial exploitation (Kumar 562

et al., 2024; Cao et al., 2024). These methods 563

work by transforming or certifying input prompts 564

to maintain alignment while resisting adversarial 565

attacks. Despite their strengths, all three defense 566

categories face challenges in balancing effective 567

defense with maintaining model performance. 568

LLM Unlearning. Machine unlearning in the con- 569

text of LLMs can be categorized into two primary 570

directions: parameter-based unlearning and data- 571

based unlearning. First, the parameter-based un- 572

learning focuses on selectively updating or adjust- 573

ing the model’s parameters to mitigate undesirable 574

behaviors without retraining the entire model (Liu 575

et al., 2018; Tarun et al., 2023). Second, the 576

data-based unlearning involves the selective re- 577

moval or alteration of specific data points that con- 578

tributed to undesirable behaviors during the train- 579

ing phase (Cao and Yang, 2015; Sekhari et al., 580

2021). 581

6 Conclusion 582

In this work, we propose Layer-AdvPatcher, a 583

novel jailbreak defense framework that precisely 584

targets and mitigates toxic behaviors in LLMs 585

by adversarially exposing and editing the iden- 586

tified toxic layers. By following a three-step 587

pipeline—toxic layer locating, adversarial augmen- 588

tation, and toxic layer editing—our approach suc- 589

cessfully identifies the model layers responsible for 590

generating harmful outputs and addresses their vul- 591

nerabilities through adversarial exposure and local- 592

ized unlearning on the augmented harmful dataset. 593

The targeted nature of our framework ensures both 594

effectiveness in reducing jailbreak susceptibility 595

and maintaining model performance. Extensive 596

evaluations across multiple advanced attack meth- 597

ods and utility benchmarks demonstrate the supe- 598

riority of Layer-AdvPatcher in achieving robust 599

defense compared to recent defense strategies. 600

7 Limitations 601

A key limitation of this work is while the frame- 602

work demonstrates efficacy on models like Llama2- 603

7B and Mistral-7B, it has not been tested in larger 604

models (e.g., Llama3-13B), both in terms of com- 605

putational resources and time. However, it does 606

not significantly weaken the novelty and contribu- 607

tion of the proposed concept of self-exposure and 608

8



then localized editing. The proposed framework609

is modular in nature, which can be adapted and610

scaled to larger models with proper engineering.611

The proposed techniques of toxic layer identifica-612

tion, adversarial augmentation, and layer editing613

are applicable across different scales if the compu-614

tational resource is larger enough.615

The possible ethical consideration is the open-616

sourcing dataset derived from the identified toxic617

layers. There is a risk that malicious actors could618

misuse this information to create more sophisti-619

cated jailbreak attacks or find new vulnerabilities.620
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A Detailed Experimental Setups822

A.1 Attack Setup823

For GCG (Zou et al., 2023), we generated the824

prompt using 20% of AdvBench(Zou et al., 2023)825

as the test set, the number of data is 104, and for826

PAIR (Chao et al., 2023), we use the part of this827

test set to generate the jailbreak prompt, in total 44828

of them.For DeepInception, we apply the ready-to-829

use template prompt provided by (Xu et al., 2024a).830

A.2 Affirmative Tokens831

ti ∈ Taffirm is a set of affirmative tokens. Here,832

N is the total number of adversarial prompts used833

in the experiment. Specifically, the set of affirma-834

tive tokens includes: [“absolute”, “certain”,835

“definite”, “glad”, “course”, “sure”,836

“yes”, “happy”, “delight”, “please”].837
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